Reg No.:

Name:

University of Kerala

First Semester Degree Examination, November 2024
Four Year Undergraduate Programme
Discipline Specific Course

Mathematics

UK1DSCMAT100, Foundations of Mathematics

Academic Level: 100-199

Time: 2 hours Max. Marks: 56

Part A. 6 Marks. Time:5 Minutes Objective Type. 1 Mark Each. Answer all Questions (Cognitive Level: Remember/Understand)

Qn.	Question	Cognitive	Course
No.		Level	Outcome
			(CO)
1.	Define an anti-symmetric relation.	Remember	CO4
2.	A matrix A is said to be non singular if	Remember	CO1
3.	The determinant of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ is	Understand	CO1
4.	A homogeneous linear system of n equations with n unknowns has a unique solution if	Understand	CO2
5.	The linear congruence $ax \equiv b \pmod{m}$ has a unique solution if and only if	Remember	CO3
6.	The sum, $\sum_{i=1}^{n} (2i-1)$ is	Remember	CO3

Part B. 10 Marks. Time:20 Minutes

Two-Three sentences. 2 Marks Each. Answer all Questions (Cognitive Level: Remember/Understand/Apply)

Qn.	Question	Cognitive	Course
No.		Level	Outcome
			(CO)
7.	Define one-to-one function. Give an example.	Remember	CO4
8.	Show that for any square matrix $A, \frac{1}{2}(A+A^t)$ is always symmetric,	Remember	CO1
	where A^t is the transpose of A .		
9.	Express (28, 12) as a linear combination of 28 and 12.	Remember	CO3
10.	Find gcd of 120 and 28.	Understand	CO3
11.	State Rouche's theorem. Give an example of a system of equations	Apply	CO2
	which is inconsistent.		

Part C. 16 Marks. Time:35 Minutes

Short-Answer. 4 Marks Each. Answer all Questions, choosing among options within each question. (Cognitive Level: Understand/Analyse/Apply)

Qn. No.	Question	Cognitive Level	Course Outcome (CO)
12.	A.) Show that the relation \equiv is an equivalence relation in the set of all integers.	II 1 1	COA
	OR B.) Define congruence relation. The equivalence relation \equiv on the set of integers defined by xRy if $x \equiv y \pmod{4}$. Find all equivalence classes under this relation.	Understand	CO4
13.	A.) If $\begin{vmatrix} a & a^2 & a^3 - 1 \\ b & b^2 & b^3 - 1 \\ c & c^2 & c^3 - 1 \end{vmatrix} = 0$, in which a, b, c are different, show that $abc = 1$.		
	OR B.) Express $\begin{bmatrix} 3 & 5 & -7 \\ -8 & 11 & 4 \\ 13 & -14 & 6 \end{bmatrix}$ as the sum of a lower triangular matrix with zero leading diagonal and an upper triangular matrix.	Apply	CO1

Qn. No.	Question	Cognitive Level	Course Outcome (CO)
14.	A.) For what value of λ , the system of equation $2x + 3y + 5z = 9, 7x + 3y - 2z = 8, 2x + 3y + \lambda z = 1$		
	has unique solution?		
	OR		
	B.) Find the values of k for which the system of equations	Analyse	CO2
	(3k - 8)x + 3y + 3z = 0		
	3x + (3k - 8)y + 3z = 0		
	3x + 3y + (3k - 8)z = 0.		
	has a non-trivial solution.		
15.	A.)Find the remainder when 3 ¹⁸¹ is divided by 17.		
	OR		COS
	B.) Using canonical decomposition of 1050 and 2574, find their <i>lcm</i> .	Understand	CO3

Part D. 24 Marks. Time:60 Minutes

Long-Answer. 6 Marks Each. Answer all 4 Questions, choosing among options within each question. (Cognitive Level: Understand/Analyse/ Apply)

Qn. No.	Question	Cognitive Level	Course Outcome (CO)
16.	A) Find the number of positive integers in the range 1976 through 3776 that are; (i.) Divisible by 13 or 15. (ii.) Not divisible by 15 or 17.	Understand	CO3
	B) Using Euclidean algorithm find (4076, 1024) and express (4076, 1024) as a linear combination of 4076 and 1024.		

A.) Find the values of a and b for which the equations		
x + ay + z = 3, x + 2y + 2z = b, x + 5y + 3z = 9		
are consistent. When these equations have a unique solution?		
OR		
B.) Test the consistency and if possible solve	Understand	CO2
4x + 2y + z + 3w = 0		
6x + 3y + 4z + 7w = 0		
2x + y + w = 0.		
A.) Determine the values of p such that the rank of the matrix $\begin{bmatrix} 1 & 1 & -1 & 0 \\ 4 & 4 & -3 & 1 \\ p & 2 & 2 & 2 \\ 9 & 9 & p & 3 \end{bmatrix}$ is 3.	Analyse	CO1
B.) Using Gauss-Jordan method find the inverse of the matrix $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}.$		
A.) Let the functions f and g defined by $f(x) = 2x + 1$ and $g(x) = x^2 - 2$. Find $f \circ f, f \circ g$, and $g \circ f$.		
OR	Apply	CO4
B.)Define partial ordering. What is the difference between an equivalence relation and a partial ordering. Show that the relation \leq on the set of all real numbers is a partial ordering.		
	are consistent. When these equations have a unique solution? $ \begin{array}{l} \textbf{OR} \\ \textbf{B.)} \textbf{ Test the consistency and if possible solve} \\ & 4x+2y+z+3w = 0 \\ & 6x+3y+4z+7w = 0 \\ & 2x+y+w = 0. \\ \hline \\ \textbf{A.)} \textbf{ Determine the values of } p \textbf{ such that the rank of the matrix} \\ \begin{bmatrix} 1 & 1 & -1 & 0 \\ 4 & 4 & -3 & 1 \\ p & 2 & 2 & 2 \\ 9 & 9 & p & 3 \\ \end{bmatrix} \textbf{ is } 3. \\ \textbf{OR} \\ \textbf{B.)} \textbf{ Using Gauss-Jordan method find the inverse of the matrix} \\ \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \\ \end{bmatrix}. \\ \textbf{A.)} \textbf{ Let the functions } f \textbf{ and } g \textbf{ defined by } f(x) = 2x+1 \textbf{ and } g(x) = x^2-2. \textbf{ Find } f \circ f, f \circ g, \textbf{ and } g \circ f. \\ \textbf{OR} \\ \textbf{B.)} \textbf{ Define partial ordering. What is the difference between an equivalence relation and a partial ordering. Show that the relation} \\ \hline \end{array} $	$x + ay + z = 3, x + 2y + 2z = b, x + 5y + 3z = 9$ are consistent. When these equations have a unique solution? \mathbf{OR} B.) Test the consistency and if possible solve $4x + 2y + z + 3w = 0$ $6x + 3y + 4z + 7w = 0$ $2x + y + w = 0.$ A.) Determine the values of p such that the rank of the matrix $\begin{bmatrix} 1 & 1 & -1 & 0 \\ 4 & 4 & -3 & 1 \\ p & 2 & 2 & 2 \\ 9 & 9 & p & 3 \end{bmatrix}$ is 3. \mathbf{OR} B.) Using Gauss-Jordan method find the inverse of the matrix $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$. Analyse \mathbf{OR} B.) Let the functions f and g defined by $f(x) = 2x + 1$ and $g(x) = x^2 - 2$. Find $f \circ f$, $f \circ g$, and $g \circ f$. \mathbf{OR} Apply B.) Define partial ordering. What is the difference between an equivalence relation and a partial ordering. Show that the relation

Reg No.:

Name:

University of Kerala

First Semester Degree Examination, November 2024
Four Year Undergraduate Programme
Discipline Specific Course

Mathematics

 ${\bf UK1DSCMAT101,\,Differential\,\,Calculus\,\,and\,\,Linear\,\,Algebra}$

Academic Level: 100-199

Time: 2 hours Max. Marks: 56

Part A. 6 Marks. Time: 5 Minutes Objective Type. 1 Mark Each. Answer all Questions (Cognitive Level: Remember/Understand)

Qn.	Question	Cognitive	Course
No.		Level	Outcome
			(CO)
1.	What is the average velocity of the particle over a time interval	Remember	CO2
	$[t_0, t_0 + h], h > 0$?		
2.	Define a concave up function on an open interval?	Remember	CO2
3.	What is critical point of a function?	Understand	CO1
4.	Find the rank of the matrix $\begin{bmatrix} 4 & -2 & 2 \\ -2 & 1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$.	Understand	CO3
5.	State the condition for a linear system $AX = B$ of m equations	Remember	CO3
	in n unknowns have unique solution.		
6.	If 2, 5 and 7 are the eigenvalues of a 3×3 matrix A, then what	Remember	CO3
	the eigenvalues of A^T .		

Part B. 10 Marks. Time:20 Minutes

Two-Three sentences. 2 Marks Each. Answer all Questions (Cognitive Level: Remember/Understand/Apply)

Qn.	Question	Cognitive	Course
No.		Level	Outcome
			(CO)
7.	Suppose f is concave down on an open interval, what about $-f$?	Remember	CO1
	Justify your answer.		
8.	Prove that $f(x) = x^3$ has a point of inflection at $x = 0$.	Understand	CO2
9.	Prove that the function $f(x) = x^2 - 4x + 3$ is concave up on the	Understand	CO2
	interval $(-\infty, \infty)$		
10.	Do the equations	Understand	CO3
	3x + 2y = 0, 6x + 4y = 0		
	have a non-trivial solution? Why?		
11.	Find the eigenvalues of the matrix $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$.	Understand	CO3

Part C. 16 Marks. Time:35 Minutes

Short-Answer. 4 Marks Each. Answer all Questions, choosing among options within each question. (Cognitive Level: Understand/Analyse/Apply)

Qn.	Question	Cognitive	Course
No.		Level	Outcome
			(CO)
12.	A) Prove that $f(x) = x $ is not differentiable at $x = 0$.	Understand	CO1
	OR		
	B) If a function $f(x)$ is differentiable at $x=a$, then prove that		
	f(x) is continuous at $x = a$.		
13.	A) Find the intervals on which $f(x) = x^2 - 6x + 5$ is increasing	Apply	CO2
	and the intervals on which it is decreasing.		
	OR		
	B) A garden is to be laid out in a rectangular area and protected		
	by a chicken wire fence. What is the largest possible area of the		
	garden if only 100 running feet of chicken wire is available for the		
	fence?		

Qn.	Question	Cognitive	Course
No.		Level	Outcome (CO)
14.	A) Solve the system of equations using Gauss elimination method	Apply	CO3
	x + y + z = 6,		
	x + 2y - 3z = -4,		
	-x - 4y + 9z = 18		
	OR		
	B) Using Cramer's Rule, solve the system of equations		
	x + y + z = 6,		
	y + 3z = 11,		
	x - 2y + z = 0		
15.	A) Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$	Apply	CO3
	OR		
	B) Examine whether the matrix $A = \begin{bmatrix} 1 & -3 & 3 \\ 0 & -5 & 6 \\ 0 & -3 & 4 \end{bmatrix}$ is diagonalizable		
	able.		

Part D. 24 Marks. Time:60 Minutes

Long-Answer. 6 Marks Each. Answer all 4 Questions, choosing among options within each question. (Cognitive Level: Understand/Analyse/ Apply)

Qn.	Question	Cognitive	Course
No.		Level	Outcome
			(CO)
16.	A) Find the absolute maximum and minimum values of the func-	Apply	CO3
	tion $f(x) = 2x^3 - 15x^2 + 36x$ on the interval [1, 5], and determine		
	where these values occur.		
	OR		
	B) Find the radius and height of the right circular cylinder of		
	largest volume that can be inscribed in a right circular cone with		
	radius 6 inch and height 10 inches.		

17.	A) Prove that $f(x) = \ln(x)$ is differentiable for $x > 0$, using definition of derivative.	Apply	CO2
	OR		
	B) If $4x^2 - 2y^2 = 9$, using implicit differentiation method, find $\frac{d^2y}{dx^2}$.		
18.	A) Show that the equations	Apply	CO3
	x + 2y + z = 3,		
	2x + 3y + 2z = 5,		
	3x - 5y + 5z = 2		
	are consistent and solve the same.		
	OR		
	B) Find the values of λ for which the system of equations		
	x + y + z = 1,		
	$x + 2y + 4z = \lambda,$		
	$x + 4y + 10z = \lambda^2$		
	will be consistent.		
19.	A) Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	Apply	CO3
	$\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}.$		
	OR		
	B) Find the matrix that diagonalize the matrix $A = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$.		

Reg No.:

Name:

University of Kerala

First Semester Degree Examination, November 2024
Four Year Undergraduate Programme
Discipline Specific Course

Mathematics

UK1DSCMAT102, Differentiation, Sequences and Series

Academic Level: 100-199

Time: 2 hours Max. Marks: 56

Part A. 6 Marks. Time:5 Minutes Objective Type. 1 Mark Each. Answer all Questions (Cognitive Level: Remember/Understand)

Qn.	Question	Cognitive	Course
No.		Level	Outcome
			(CO)
1.	The value of $\lim_{x\to 0} \frac{\sin x}{x}$ is	Remember	CO1
	a) 0 b) -1 c) 1 d) ∞		
2.	If $y = f(x)$, define the average rate of change of y with respect to	Remember	CO2
	x over the interval $[x_0, x_1]$.		
3.	Find $\frac{d}{dx}[\ln x]$.	Understand	CO1
4.	Find the values of x at which $f(x) = \frac{x+2}{x^2-4}$ in not continuous.	Understand	CO1
5.	What is harmonic series?	Remember	CO3
6.	When do we say a series $\sum_{k=1}^{\infty} u_k$ converge absolutely?	Remember	CO3

Part B. 10 Marks. Time:20 Minutes
Two-Three sentences. 2 Marks Each. Answer all Questions

(Cognitive Level: Remember/Understand/Apply)

Qn.	Question	Cognitive	Course
No.		Level	Outcome
			(CO)
7.	Define continuity of a function $y = f(x)$ at a point $x = c$.	Remember	CO1
8.	Define chain rule for differentiation	Remember	CO1
9.	Define Taylor series for a function $f(x)$ about $x = x_0$ and Maclau-	Remember	CO3
	rin series for $f(x)$		
10.	Find $\frac{d}{dx}$ of $y = \cos(x^3)$.	Understand	CO2
11.	Use ratio of successive terms to show that the sequence	Apply	CO3
	$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots$ is strictly increasing.		

Part C. 16 Marks. Time:35 Minutes

Short-Answer. 4 Marks Each. Answer all Questions, choosing among options within each question. (Cognitive Level: Understand/Analyse/Apply)

Qn.	Question	Cognitive	Course
No.		Level	Outcome
			(CO)
12.	A. Find $\frac{d}{dx} \left[\sin(\sqrt{1 + \cos x}) \right]$.	Understand	CO2
	OR		
	B. Find the slopes of the tangent lines to the curve $y^2 - x + 1 = 0$		
	at the points $(2,-1)$ and $(2,1)$.		
13.	A. Consider the function $f(x) = 9 - x^2 $. Show that f is not	Understand	CO1
	differentiable at $x = -3$ and $x = 3$.		
	OR		
	B. Evaluate $\lim_{x\to 0+} \left(\frac{1}{x} - \frac{1}{\sin x}\right)$.		
14.	A. Determine whether the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt{n^3+5}}$ converges or di-	Analyse	CO3
	verges.		
	OR		
	B. Determine whether the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k-1}}$ converge or diverge.		
15.	B. Determine whether the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k-1}}$ converge or diverge. A. Determine whether the $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k+3}{k(k+1)}$ converges.	Apply	CO3
	OR		
	B. Find the Maclaurin polynomials p_0, p_1, p_2 for e^x		

Part D. 24 Marks. Time:60 Minutes

Long-Answer. 6 Marks Each. Answer all 4 Questions, choosing among options within each question. (Cognitive Level: Understand/Analyse/ Apply)

Qn.	Question	Cognitive	Course
No.		Level	Outcome
			(CO)
16.	A) Find	Understand	CO1
	(i) $\frac{d}{dx}[(1+x^5\cot x)^{-8}]$		
	$ \begin{array}{l} (i) \frac{d}{dx} [(1+x^5 \cot x)^{-8}] \\ (ii) \frac{d}{dx} [\sin(\sqrt{1+\cos x})]. \end{array} $		
	OR		
	B) Find		
	$(\sqrt{x^6+5}-x^3)$		
	(1) $\lim_{x\to\infty} {}$ x^3		
	(i) $\lim_{x \to \infty} \frac{(\sqrt{x^6 + 5} - x^3)}{x^3}$ (ii) $\lim_{x \to \infty} \frac{\sqrt{x^2 + 2}}{3x - 6}$.		
17.	A) Determine whether the series $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$ converges or diverges.	IIn denstand	CO1
17.	A) Determine whether the series $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$ converges or diverges.	Understand	CO1
	If it converges, find the sum.		
	OR		
	B) Check the convergence of the sequence $\left\{\frac{10^n}{n!}\right\}_{n=1}^{\infty}$.		
18.	A) During the first 40 s of a rocket flight, the rocket is propelled	Analyse	CO3
	straight up so that in t seconds it reaches a height of $s = 0.3t^3$ ft.		
	(a) How high does the rocket travel in 40 s?		
	(b) What is the average velocity of the rocket during the first 40		
	s?		
	(c) What is the instantaneous velocity of the rocket at the end of		
	40 s?		
	OR		
	B) At what point in the first quadrant is the tangent line to the		
	Folium of Descartes $x^3 + y^3 = 3xy$ horizontal?		
10		A 1	GOO
19.	A) Find the n^{th} Maclaurin polynomial for $\sin x$	Apply	CO2
	OR		
	B) Use an n^{th} Maclaurin polynomial for e^x to approximate e to		
	five decimal-place accuracy.		

Reg. No.:	• • • • • • • • • • • • • • • • • • • •	•••••
Name		

University of Kerala

First Semester Degree Examination, November 2024

Four Year Under Graduate Programme

Discipline Specific Core Course MATHEMATICS

UKIDSCMAT109- MATHEMATICS FOR SOCIAL SCIENCE I

Academic Level: 100-199

Time: 2 Hours Max. Marks: 56

Part A. Answer All Questions, Objective Type. 1 Mark Each. (Cognitive Level: Remember/Understand) 6 Marks. Time: 5 Minutes

Qn. No.	Question	Cognitive Level	Course Outcome (CO)
1.	Express the set of all odd integers in rule method.	Remember	CO1
2.	Define the complement of set A in universal set U	Remember	CO1
3.	Find the value of x in $2x+5=11$	Understand	CO2
4.	Find the solution of $x^2+2x+1=0$	Understand	CO2
5.	Which of the following is an objective function in LLP (a) Maximize profit (b) Minimize cost (c) Both a and b (d) Neither a nor b	Remember	CO3
6.	Which of the following is an example of a decision variable? (a) x (b) 2 (c) 3y (d) Max Z	Remember	CO3

Part B.

Answer All Questions, Two-Three sentences. 2 Marks Each.

(Cognitive Level: Remember/Understand/Apply) 10 Marks. Time: 20 Minutes

Qn. No.	Question	Cognitive Level	Course Outcome (CO)
7.	Find the power set of $A = \{1,2,3\}$	Remember	CO1
8.	Find the cartesian product of AxB and BxA if A={1,2}, B={1,2,3}	Remember	CO1
9.	What do you mean by multiple optimal solution	Remember	CO3
10.	What are decision variables in LPP	Understand	CO3
11.	Solve 13x-4 (5x-8) + 17=0	Apply	CO2

Part C. Answer all 4 questions, choosing among options within each question. Short Answer. 4 Marks Each.

(Cognitive Level: Remember/Understand/Apply/Analyse) 16 Marks. Time: 35 Minutes

Qn.No.	Question	Cognitive Level	Course Outcome (CO)
	A. If A = {a,b,c}, B = {1,2,3} and C = {e,f} Find A-B, B-C and A-C		
12.	OR B. $A = \{a, e, i, o, u, z\}, B = \{i, u, x, y\}. \Omega =$ Set of all lower case alphabets. Find $A \cup B, A \cap B, A^c \cup B^c, A^c \cap B^c$.	Understand	CO1
13.	A. Explain feasible and Basic feasible solution of an LPP with a proper example OR B. Define slack variables. Explain the use of slack variables in an LPP.	Understand	CO3
14.	A. Solve x^2 -16x+48=0 OR B. Solve x^2 -24x+144=0	Analyze	CO2
15.	A. Plot the total revenue function TR=x (10-2x) ² OR B. What are the key concepts in TR function?	Apply	CO4

Part D. Answer all 4 questions, choosing among options within each question. Long Answer. 6 Marks Each.

(Cognitive Level: Remember/Understand/Apply/Analyse) 24 Marks. Time: 60 Minutes

Qn.No.	Question	Cognitive Level	Course Outcome (CO)
16.	A. Let $A = \{0,1,2,3\}$. For $x \in A$, $y \in A$, find the relation (i) $y < x$ (ii) $x = y$, (iii) $x = 2y$. Also find the domain and range of each relation. OR B. Let $A = \{1,2,3\}$, $B = \{2,3,4\}$, $C = \{5,6,7\}$ and $D = \{6,7,8\}$. Verify that $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$ holds.	Understand	CO1
17.	A. Solve the system of equations; 2.5x + 1.8y = 7.2 1.2x - 0.8y = 2.4 OR B. Solve the system of equations; 14x - 81y = 9 91x - 15y = 31	Understand	CO2
18.	A. Solve the LPP using graphical method: Maximize $z = 2x+5y$ Subject to $x+4y \le 24$ $3x+y \le 21$ $x+y \le 9$ $x,y \ge 0$ OR B. Solve the LPP Maximize $f = 3x_1 + 4x_2$ Subject to $x_1 + x_2 \le 6$; $2x_1 + 4x_2 \le 21$ $x_1 + 4x_2 \le 6$ $x_1, x_2 \ge 0$	Analyse	CO3
19.	A. Compare the form of demand curves and total revenue curves described from the following case p=(3-x) and p= (4-x²) OR B. Discuss and trace the demand curves 1. p= 20-x 2. p=10-x²	Apply	CO4

Reg. No.:	
Neg. 110	U8437
	00437

Name:....

University of Kerala

First Semester Degree Examination, November 2024 Four Year Under Graduate Programme Discipline Specific Core Course

MATHEMATICS UK1DSCMAT110 - MATRICES AND LINEAR EQUATIONS

Academic Level: 100-199

Time:2 Hours Max.Marks:56

Part A.

Answer All Questions, Objective Type. 1 Mark Each. (Cognitive Level: Remember/Understand)

6 Marks. Time: 5 Minutes

Qn. No.	Question	Cognitive Level	Course Outcome (CO)
1.	Define a symmetric matrix.	Remember	CO2
2.	When do we say that a square matrix A is singular?	Remember	CO1
3.	If the order of A is 3 X 2 and order of B is 5 X 2, then what is the order of AB ^T ?	Understand	CO1
4.	If A is an n X n matrix and k is any scalar then $det(kA)=$	Understand	CO3
5.	Define norm of a vector in \mathbb{R}^n .	Remember	CO4
6.	When do we say that two vectors \overline{u} and \overline{v} are orthogonal?	Remember	CO4

Part B. Answer All Questions , Two-Three sentences. 2 Marks Each. (Cognitive Level: Remember/Understand/Apply)

10 Marks. Time: 20 Minutes

Qn. No.	Question	Cognitive Level	Course Outcome (CO)
	If $A = \begin{bmatrix} 3 & 0 & 1 \\ -2 & 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \\ 1 & 2 \end{bmatrix}$, then show that $AB \neq BA$.	Remember	CO1
8.	If $A = \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix}$, find A^{-1} .	Remember	CO2

9.	•	Express the matrix equation as a system of linear equations $\begin{bmatrix} 2 & -1 & 6 \\ 1 & 4 & 5 \\ 7 & 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 6 \\ 0 \end{bmatrix}$	Remember	CO2
10	0.	Verify that det (A) = det (A ^T), where $A = \begin{bmatrix} -2 & 3 \\ 1 & 4 \end{bmatrix}$.	Understand	CO3
1	1.	Find the distance between $\overline{u} = (1,3,-2,7) \land \overline{v} = (0,7,2,2)$.	Apply	CO4

Part C.

Answer all 4 questions, choosing among options within each question.

Short Answer. 4 Marks Each.

(Cognitive Level: Remember/Understand/Apply/Analyse)16 Marks.Time: 35 Minutes

Qn. No.	Question	Cognitive Level	Course
12.		LCVCI	Outcome
	A. Find the value of <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , given that	Understand	(CO) CO1 & CO2
	$\begin{bmatrix} a-b & b+a \\ 3d+c & 2d-c \end{bmatrix} = \begin{bmatrix} 8 & 1 \\ 7 & 6 \end{bmatrix}$		
	OR		
	B. If A is invertible symmetric matrix, then prove that A^{-1} is symmetric.		
	A. If $A = \begin{bmatrix} 2 & 4 \\ -1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 \\ -1 & 6 \end{bmatrix}$, show that $A(BC) = (AB)C$.	Understand	CO1 & CO 2
	OR B. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, find $A^2 - 3A + 2I$		
14.	A. Find the value of k for which the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ k & 1 & k \\ 0 & 2 & 1 \end{bmatrix}$	Analyse	CO3 & CO4
	is singular.		
	OR B. If \overline{u} and \overline{v} are vectors in R^n , prove that $ u+v \le u + v $		
15.	A. Let $\overline{u} = (2, -1,3)$ and $\overline{a} = (4, -1,2)$. Find the vector component of \overline{u} along \overline{a} and the vector component of \overline{u} orthogonal to \overline{a} . OR B. Find the area of the triangle determined by the points $P_1 = (2,2,0), P_2 = (-1,0,2) \land P_3 = (0,4,3)$.	Apply	CO 4

Part D.

Answer all 4 questions, choosing among options within each question.Long Answer. 6 Marks Each.

(Cognitive Level: Understand/Apply/Analyse/Evaluate/Create) 24 Marks. Time: 60 Minutes

Qn. No.	Question	Cognitive Level	Course Outcome (CO)
16.	A. If $A = \begin{bmatrix} 2 & -3 \\ 1 & 5 \end{bmatrix}$, $B = \begin{bmatrix} -4 & 0 \\ 1 & 6 \end{bmatrix}$, show that $(A+B)(A-B) \neq A^2 - B^2$. OR B. Using Gauss Jordan Method, solve $x + y + 2z = 4,2x - y + z = 2, x - 2y + 2z = 1$	Understand	CO1
17.	A. If $A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 6 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 3 \\ 1 & 1 \\ -1 & 1 \end{bmatrix}$. Showthat $ (AB)^T = B^T A^T $ OR B. Express $A = \begin{bmatrix} 2 & 4 & 9 \\ 1 & 3 & 0 \\ 2 & 1 & 5 \end{bmatrix}$ as a sum of a symmetric and a skew symmetric matrix	Understand	CO 2
18.	A. Find the inverse of the matrix $A = \begin{bmatrix} 3 & 2 & -1 \\ 1 & 6 & 3 \\ 2 & -4 & 0 \end{bmatrix}$. OR B. Using Cramer's rule, solve $x_1 + 2x_3 = 6$ $-3x_1 + 4x_2 + 6x_3 = 30$ $-x_1 - 2x_2 + 3x_3 = 8$	Analyse	CO4
19.	A. Find the distance between the point $(1, -4, -3)$ and the plane $2x - 3y + 6z = -1$. OR B. Find the distance between the planes $x + 2y - 2z = 3$ and $2x + 4y - 4z = 7$.	Apply	CO4